Structure of Numerically Simulated Katabatic and Anabatic Flows along Steep Slopes
نویسنده
چکیده
Direct numerical simulation (DNS) is applied to investigate properties of katabatic and anabatic flows along thermally perturbed (in terms of surface buoyancy flux) sloping surfaces in the absence of rotation. Numerical experiments are conducted for homogeneous surface forcings over infinite planar slopes. The simulated flows are the turbulent analogs of the Prandtl (1942) one-dimensional laminar slope flow. The simulated flows achieve quasi-steady periodic regimes at large times, with turbulent fluctuations being modified by persistent low-frequency oscillatory motions with frequency equal to the product of the ambient buoyancy frequency and the sine of the slope angle. These oscillatory wave-type motions result from interactions between turbulence and ambient stable stratification despite the temporal constancy of the surface buoyant forcing. The structure of the mean-flow fields and turbulence statistics in simulated slope flows is analyzed. An integral dynamic similarity constraint for steady slope/wall flows forced by surface buoyancy flux is derived and quantitatively verified against the DNS data.
منابع مشابه
Turbulence and waves in numerically simulated slope flows
Direct numerical simulation (DNS) is applied to investigate properties of katabatic and anabatic flows along thermally perturbed (in terms of surface buoyancy flux) sloping surfaces in the absence of rotation. Numerical experiments are conducted for homogeneous surface forcings over infinite planar slopes. The simulated flows are the turbulent analogs of the Prandtl (1942) one-dimensional lamin...
متن کاملOptimal control of katabatic flows within canopies
What slope angle favours the development of katabatic flow is still an open question. Some studies have clarified that katabatic winds are stronger on steep slopes, while others have demonstrated that katabatic winds are stronger on gentle slopes. Here, we explore the control mechanisms of katabatic flow using a simplified theoretical model in an attempt to clarify the causes of the paradoxical...
متن کاملAnalytical and Numerical Investigation of Two-Dimensional Katabatic Flow Resulting from Local Surface Cooling
The analysis of katabatic flows is often complicated by heterogeneity in surface characteristics. This study focuses on an idealized type of katabatic flow driven by a simple form of inhomogeneous surface forcing: a buoyancy or buoyancy flux that varies down the slope as a top-hat profile (cold strip). We consider the two-dimensional Boussinesq system of governing flow equations with the slope ...
متن کاملISPH Numerical Modeling of Nonlinear Wave Run-up on Steep Slopes
Non-breaking tsunami waves run-up on steep slopes can cause severe damages to coastal structures. The estimation of the wave run-up rate caused by tsunami waves are important to understand the performance and safety issues of the breakwater in practice. In this paper, an Incompressible Smoothed Particle Hydrodynamics method (ISPH) method was utilized for the 2DV numerical modeling of nonli...
متن کاملCoriolis effects in homogeneous and inhomogeneous katabatic flows
Katabatic flows along a planar slope in a viscous stably-stratified fluid are investigated analytically and numerically, with an emphasis on flow features arising from the action of the Coriolis force. Two idealized flow types are considered: turbulent flow along a uniformly cooled slope, and two-dimensional laminar flow induced by a cold strip of finite width running down the slope. In the cas...
متن کامل